## ROSATOMFLOT



# The Navigation on the Northern Sea Route Today & in the Future

### Northern Sea Route is the highway to European and Asian markets

| Oil and Gas from Murmansk |         |            |        |       |             |  |  |  |  |  |
|---------------------------|---------|------------|--------|-------|-------------|--|--|--|--|--|
| State                     | through | Suez Canal | throug | h NSR | +/-<br>days |  |  |  |  |  |
| Japan                     | 12291   | 37,1       | 6010   | 18,1  | -19         |  |  |  |  |  |
| (p. Kobe)                 | miles   | days       | miles  | days  |             |  |  |  |  |  |
| Korea                     | 12266   | 37         | 6097   | 18,4  | -18,6       |  |  |  |  |  |
| (p. Busan)                | miles   | days       | miles  | days  |             |  |  |  |  |  |
| China                     | 11848   | 35,8       | 6577   | 19,9  | -15,9       |  |  |  |  |  |
| (p. Ningbo)               | miles   | days       | miles  | days  |             |  |  |  |  |  |



From Rotterdam to the Asian markets

| State       | through S | uez Canal | throug | +/-<br>days     |       |  |  |
|-------------|-----------|-----------|--------|-----------------|-------|--|--|
| Japan       | 10969     | 33,1      | 7610   | 761023milesdays |       |  |  |
| (p. Kobe)   | miles     | days      | miles  |                 |       |  |  |
| Korea       | 10754     | 32,5      | 7697   | 23,2            | - 9,3 |  |  |
| (p. Busan)  | miles     | days      | miles  | days            |       |  |  |
| China       | 10336     | 31,2      | 8177   | 24,7            | - 6,5 |  |  |
| (p. Ningbo) | miles     | days      | miles  | days            |       |  |  |



### First Commercial Transit Voyage of a non-Russian flag vessel via the Northern Sea Route mv Beluga Fraternity & mv Beluga Foresight in 2009 Saved more than 3000 miles and 10 days compared to the Suez Canal



- 1. 21.08.2009 left p. Vladivostok, Russia
- 2. 31.08.2009 meeting with ib 50 Let Pobedy
- 3. 03.09.2009 ib Rossia joined the convoy
- 4. 07-11.2009 offshore discharging in Noviy Port / port of Yamburg
- 5. 16.09.2009 exit from the NSR in the West

### **Transit Voyages 2010**





SCF Baltica: NSR period: 16.08 – 27.08.2010 (10,5 days) Tanker deadweight:117000 tons Cargo: 70000 tons of gas condensate **Nordic Barents:** NSR period: **8 days** Bulker deadweight:43372 tons Cargo: 41000 tons of iron concentrate

4 transit voyages were done in 2010 Total amount of transit cargo: 111 000 tons In ballast: 2 voyages

### The Latest Transit via NSR December 16-25, 2010



The voyage by Swedish supply icebreaker Tor Viking II piloted by atomic icebreaker Rossiya was done a month after the official completion of summer-toautumn navigation on the NSR. This successful transit voyage done in late December proved that it is possible to increase the period of Arctic navigation on the NSR in winter months.

### **Pilotage of mt Perseverance on the NSR in 2011**



Eastbound Voyage:Return Voyage:Tanker deadweight: 75000 tonsTanker deadweight: 75000 tonsCargo: 61000 tons gas condensateCargo: 64000 tons jet fuelNSR navigation period: 30.06 – 15.07.2011NSR navigation period: 09.09 – 16.09.2011(14,9 days)(8 days)Average speed: 7,6 knotsAverage speed: 13,7 knots

### Pilotage of mt Vladimir Tikhonov on the NSR The Largest Vessel that Transited NSR



Tanker deadweight: 160 000 tons (Suezmax) Cargo: 120 000 tons gas condensate of JSC NOVATEK NSR navigation period: 23.08 – 30.08.2011 Average speed: 14,0 knots

### **Pilotage of mv Sanko Odyssey on the NSR** The First Panamax Bulk Carrier that Transited NSR



Bulker deadweight: 75 000 tons (Panamax) Cargo: 66 500 tons of iron ore by JSC EUROCHEM NSR navigation period: 03.09.2011 – 10.09.2011 Average speed: - 13,7 knots

# LNG Ob River in Transit via NSR

LNG Ob River Ice Class 1A (Arc 4) Displacement 116 325 t Cargo Capacity: 149 755 cmb Flag: Marshall Islands





Ballast: Westbound 08-16.10.2012

Laden: Eastbound 09-18.11.2012 134 738 cbm LNG

### Charts of transits via the Suez Canal and the Northern Sea Route **Ballast voyages Mizushima - Montoir**



This slide is provided by Gazprom Marketing & Trading



#### Comparative Analysis of Cost Efficiency for NSR and Suez Canal Transit

#### Cost Efficiency of LNG tanker "Ob River" laden voyage via NSR



#### This slide is provided by Gazprom Marketing & Trading

# Estimated Economic Efficiency for LNG tanker voyage via the Northern Sea Route

| Hammerfest -Tobata     | Suez    | NSR     | Difference |
|------------------------|---------|---------|------------|
| Distance               | 12100 m | 6100 m  | 50%        |
| Time (maximum speed)*  | 26 days | 17 days | 35%        |
| Time (optimal speed)** | 39 days | 21 days | 54%        |

| Fuel Consumption  | Cost Efficiency*** |
|-------------------|--------------------|
| Maximum Speed*    | 53%                |
| Optimal Speed**** | 55%                |

#### **Remarks:**

\* For the purpose of evaluation the average speed of 19.5 knots was used, except for the voyage via NSR (2450 m), where the average speed was 12 knots.

\*\* For the purpose of evaluation the average speed of 19.5 knots was used, except for the voyage via NSR (2450 m), where the average speed was 12 knots.

\*\*\* Estimated economic efficiency for the transit via NSR compared to the transit via Suez Canal

\*\*\*\* For the purpose of Suez Canal transit evaluation maximum speed of 19,5 knots was used. For the purpose of NSR transit th optimal speed of 13 knots was used.

#### This slide is provided by Gazprom Marketing & Trading

# NSR Caravan Piloting July 2012



Mv Nordic Odyssey, ttb Vengeri, mt Marilee, mv Kapitan Danilkin ice-piloted by ib Yamal and Vaygach July 12 – 22, 2012

# NSR Caravan Piloting July 2013 Eastbound



Mt Two Million Ways with 61 000 tons of gas condensate is the part of the caravan piloted by ib Vaygach and Taimyr

## **Pilot Voyages 2013**







NSR period: 26.08 – 03.09.2013 (7,5 days) Deadweight:16651 tons Cargo: general cargo & equipment Owner: COSCO Shipping Stena Polaris:

Tanker deadweight: 75 000 tons Cargo: naphtha from Ust-Luga Owner: Stena Shipping Sponsored: Ministry of Ocean & Fisheries of the Republic of Korea Charterer: Hyundai Glovis Co

### Icebreaking pilotage of Northern Navy Fleet ships headed by heavy atomic missile cruiser Petr Velikiy



#### September 08-10, 2013 through Vilkitskiy Strait eastbound Ships have NO ice class

# **Total of Transit Voyages in 2010-2013**

|                  | 2010          | 2011           | 2012           | 2013*          |
|------------------|---------------|----------------|----------------|----------------|
| Total Volume of  | 111 000       | 820 789        | 1 261 545      | 489 653*       |
| Transit Cargo, t |               |                |                |                |
| Total Number of  | 4             | 34             | 46             | 31*            |
| Transit Voyages  | (2 of them in | (10 of them in | (13 of them in | (11 of them in |
|                  | ballast)      | ballast)       | ballast)       | ballast)       |

### NSR Transit 2012 Cargo

| Cargo Type    | Number of<br>Vessels | Volume, t | Displacement, t | Cargo Volume<br>Eastbound, t | Cargo Volume<br>Westbound |
|---------------|----------------------|-----------|-----------------|------------------------------|---------------------------|
| Liquid        | 26                   | 894 079   |                 | 661 326                      | 232 753                   |
| Bulk          | 6                    | 359 201   |                 | 262 263                      | 96 938                    |
| Frozen Fish   | 1                    | 8 265     |                 |                              | 8 265                     |
| Ballast       | 6                    |           | 472 075         |                              |                           |
| Repositioning | 7                    |           | 78 351          |                              |                           |
| Total:        | 46                   | 1 261 545 | 550 426         | 923 589                      | 337 956                   |

 $\star$ 

\*



# **The Gulf of Finland**



2011 i/b Vaygach Freight period: 19.02 – 16.04.2011 Total vessels piloted: 258 2012 i/b 50 Let Pobedy 27.01 – 09.03.2012 i/b Rossiya 09.03 – 18.04.2012 Total vessels piloted: 332 2013

i/b Rossiya Fright period 16.01 – 15.04.2013 Total vessels piloted: 355

# White Sea (Vitino Port Operations)



# What's next?



## I. Cargo base for the Northern Sea Route



| West-East                                                                            | East-West                                    |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------|----------------------------------------------|--|--|--|--|--|--|--|--|
| LNG(p. Sabetta, Hammerfest)                                                          | Coal (Prince Rupert, Vancouver)              |  |  |  |  |  |  |  |  |
| Iron Ore (Murmansk, Narvik)                                                          | Fish (Petropavlovsk-Kamchatsky, Hokkaido)    |  |  |  |  |  |  |  |  |
| Crude Oil (Primorsk)                                                                 | Light oil products (Busan, Inchon)           |  |  |  |  |  |  |  |  |
| Gas condensate (Ust-Luga, p. Vitino)                                                 | Seasonal container cargoes (Busan, Hokkaido) |  |  |  |  |  |  |  |  |
| Total: 15 mln. transit tons per year + 15 mln. LNG from p. Sabetta + 10 mln. tons of |                                              |  |  |  |  |  |  |  |  |
| oil from N                                                                           | Noviv Port                                   |  |  |  |  |  |  |  |  |

# Yamal LNG Port Sabetta Construction Site





2011

928,9

691,8

17799

48,8

2012

928,5

739,9

17225

47,2

Suez Canal Characteristics:
Length – 193,30 km
Bypasses Length – 80,5 km
Width at 11m draught – 205/225 m
Water Depth – 24 m
Max Draught – 20,12 m (66 feet)
Max Deadweight – 240 000 t

#### Suez Canal Cargo Traffic in 2011-2012

Net Tonnage, mln. tons

**Total Number of Vessels** 

Total Cargo transited, mln. tons

Average Number of Vessels/Day

**Export-Import of North-West Europe Ports** through the Suez Canal, mln. tons in 2012

|                  |         |        |        |        | 11 |  |  |  |
|------------------|---------|--------|--------|--------|----|--|--|--|
| Export           |         | Import |        |        |    |  |  |  |
| 85,487           | 123,518 |        |        |        |    |  |  |  |
|                  | Inclu   | ding:  |        |        |    |  |  |  |
| Type of Cargo    | F       | Cxport | Import |        |    |  |  |  |
| Oil Products     |         | 5,286  |        | 29,658 |    |  |  |  |
| LNG              |         |        |        | 12,480 |    |  |  |  |
| Coal             |         | - /    |        |        |    |  |  |  |
| Metal & Iron Ore |         | 2,808  |        | -      |    |  |  |  |
| Other            | 7       | 7,570  |        | 74,094 |    |  |  |  |

# **II. Ice Conditions in the Russian Arctic**

#### Satellite Image of Ice Conditions in the Russian sector of Arctic dd. 18.09.2012

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ГИДРОМЕТЕОРОЛОГИИ И МОНИТОРИНГУ ОКРУЖАЮЩЕЙ СРЕДЫ ФГБУ "НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР КОСМИЧЕСКОЙ ГИДРОМЕТЕОРОЛОГИИ "ПЛАНЕТА"



Радиолокационное изображение ледовой обстановки в российском секторе Арктики Составлена по данным ИСЗ Oceansat-2/OSCAT, AQUAMODIS, NOAA/AVHRR, DMSP/SSMI © EUMETSAT OSI SAF, © NOAA-NESDIS-STAR, 17.09 - 18.09 2012

ФГБУ "НИЦ "ПЛАНЕТА" Россия, 123342 Москва Б.Предтеченский пер., 7 Тел: (499) 252 37 17 Факс: (499) 252 66 10 Е-mail: asmus@blanet.itto.ru

положение кромки дрейфующего льда (сплоченностью 1-10 баллов) на 17.09 - 18.09.2012
 положение кромки дрейфующего льда (сплоченностью 1-10 баллов) на 09.09 - 11.09.2012

## Ice Conditions in the Russian Arctic

#### Satellite Image of Ice Conditions in the Russian sector of Arctic dd. 17.09.2013

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ГИДРОМЕТЕОРОЛОГИИ И МОНИТОРИНГУ ОКРУЖАЮЩЕЙ СРЕДЫ ФГБУ "НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР КОСМИЧЕСКОЙ ГИДРОМЕТЕОРОЛОГИИ "ПЛАНЕТА"



| _             |            |                    |   | Kara | a Sea | L                  |   |   |                 | Lapt | ev Se        | a |                    |   | Ea | st Sib | erian          | Sea |    |       |     |   |
|---------------|------------|--------------------|---|------|-------|--------------------|---|---|-----------------|------|--------------|---|--------------------|---|----|--------|----------------|-----|----|-------|-----|---|
| Ice<br>Class  | Navigation | South-West<br>Area |   |      | N     | North-East<br>Area |   | V | Western<br>Area |      | Eastern Area |   | South-West<br>Area |   |    | No     | orth-E<br>Area | ast | Ch | ukchi | Sea |   |
|               |            | Н                  | M | L    | Н     | М                  | L | Н | Μ               | L    | Н            | М | L                  | H | Μ  | L      | Н              | Μ   | L  | Н     | М   | L |
| No Ice        | in         |                    |   |      |       |                    |   |   |                 |      |              |   |                    |   |    |        |                |     |    |       |     |   |
| Class         | IB         |                    |   |      |       |                    |   |   |                 |      |              |   |                    |   |    |        |                |     |    |       |     |   |
| Ice1          | in         |                    |   |      |       |                    |   |   |                 |      |              |   |                    |   |    |        |                |     |    |       |     |   |
| (1D)          | IB         |                    |   |      |       |                    |   |   |                 |      |              |   |                    |   |    |        |                |     |    |       |     |   |
| Ice2          | in         |                    |   |      |       |                    |   |   |                 |      |              |   |                    |   |    |        |                |     |    |       |     |   |
| (1C)          | IB         |                    |   |      |       |                    |   |   |                 |      |              |   |                    |   |    |        |                |     |    |       |     |   |
| Ice3          | in         |                    |   |      |       |                    |   |   |                 |      |              |   |                    |   |    |        |                |     |    |       |     |   |
| (1B)          | IB         |                    |   |      |       |                    |   |   |                 |      |              |   |                    |   |    |        |                |     |    |       |     |   |
| Arc4          | in         |                    |   |      |       |                    |   |   |                 |      |              |   |                    |   |    |        |                |     |    |       |     |   |
| (1A)          | IB         |                    |   |      |       |                    |   |   |                 |      |              |   |                    |   |    |        |                |     |    |       |     |   |
| Arc5          | in         |                    |   |      |       |                    |   |   |                 |      |              |   |                    |   |    |        |                |     |    |       |     |   |
| (IA<br>Super) | IB         |                    |   |      |       |                    |   |   |                 |      |              |   |                    |   |    |        |                |     |    |       |     |   |
| Ama           | in         |                    |   |      |       |                    |   |   |                 |      |              |   |                    |   |    |        |                |     |    |       |     |   |
| Arco          | IB         |                    |   |      |       |                    |   |   |                 |      |              |   |                    |   |    |        |                |     |    |       |     |   |
| A mo7         | in         |                    |   |      |       |                    |   |   |                 |      |              |   |                    |   |    |        |                |     |    |       |     |   |
| Arc/          | IB         |                    |   |      |       |                    |   |   |                 |      |              |   |                    |   |    |        |                |     |    |       |     |   |
| Arce          | in         |                    |   |      |       |                    |   |   |                 |      |              |   |                    |   |    |        |                |     |    |       |     |   |
| Alto          | IB         |                    |   |      |       |                    |   |   |                 |      |              |   |                    |   |    |        |                |     |    |       |     |   |
| ArcQ          | in         |                    |   |      |       |                    |   |   |                 |      |              |   |                    |   |    |        |                |     |    |       |     |   |
| AIC           | IB         |                    |   |      |       |                    |   |   |                 |      |              |   |                    |   |    |        |                |     |    |       |     |   |

**Permitted Ice Class for NSR Navigation for July – November period** 

in – independent navigation, IB – navigation with icebreaking support, H – heavy, M – medium, L – light ice conditions

## **Ice Conditions by Periods:**



| Ice Concentration 1-6 points                     |  | Ice Concentration 7-10 points |  |  |  |  |  |  |  |
|--------------------------------------------------|--|-------------------------------|--|--|--|--|--|--|--|
| Extra Young Ice                                  |  | Fast Ice                      |  |  |  |  |  |  |  |
| Young Ice (0-30 cm)                              |  | Clear                         |  |  |  |  |  |  |  |
| One-Year Ice (30-200 cm)                         |  |                               |  |  |  |  |  |  |  |
| <br>Ice Area Border according to TV/IR/microwave |  |                               |  |  |  |  |  |  |  |



#### **Coordinates of Polar Stations Disembarkation 2008-2012**



1 – PS-36 07.09.2008 2 – PS-37 07.09.2009 3 – PS-38 15.10.2010 4 – PS-39 01.10.2011 5 - PS-40 01.10.2012

# III. Atomic Icebreaking Fleet and Further Development



# **Atomic Icebreaking Fleet of Russia**



Atomic icebreakers of "Arktika" type: Propulsion Capacity – 54 MW; Water displacement – 23000 t; i/b "Rossia" – 21.12.1985 i/b "Sovetsky Soyuz" – 29.12.1989 i/b "Yamal" – 28.10.1992 i/b "50 Let Pobedy" – 23.03.2007



Atomic Icebreakers of "Taimyr" type: Propulsion Capacity – 35 MW; Water displacement 21000 t; i/b "Taimyr" – **30.06.1989** i/b "Yaygach" – **25.07.1990** 

## **Federal State Unitary Enterprise of Atomic Fleet**



#### Atomic Fleet has 18 units: Personnel: 1234

- □ Atomic Vessels 10
  - Atomic Icebreakers 9 Among them operational - 5
  - □ Atomic container carrier 1
- □ Special Vessels 5
- □ Floating Port Crane
- □ 2 Floating Docks

#### **<u>Coastal Facilities:</u>** Personnel: 825

- □ base for the atomic icebreaking fleet;
- □ full complex of ship repair;
- □ nuclear fuel handling;
- □ radioactive wastes handling.



# 100 Icebreakers on the North Pole 1977 - 2013



# Med-term Operational Period of Atomic Icebreakers (with Nuclear Power Plant resource of 150-175 000 hours)

| Наименование                                                               | Год ввода в<br>эксплуатацию | 2012 | 2013 | 2014    | 2015     | 2016      | 2017      | 2018                               | 2019       | 2020  | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 |
|----------------------------------------------------------------------------|-----------------------------|------|------|---------|----------|-----------|-----------|------------------------------------|------------|-------|------|------|------|------|------|------|------|
| Taimyr                                                                     | 1989                        |      |      |         |          |           |           |                                    |            |       |      |      |      |      |      |      |      |
| Vaygach                                                                    | 1990                        |      |      |         |          |           |           |                                    |            |       |      |      |      |      |      |      |      |
| Rossiya                                                                    | 1985                        |      |      |         |          |           |           |                                    |            |       |      |      |      |      |      |      |      |
| Sovetskiy<br>Soyuz                                                         | 1989                        |      |      |         |          |           |           |                                    |            |       |      |      |      |      |      |      |      |
| Yamal                                                                      | 1992                        |      |      |         |          |           |           |                                    |            |       |      |      |      |      |      |      |      |
| 50 Let<br>Pobedy                                                           | 2007                        |      |      |         |          |           |           |                                    |            |       |      |      |      |      |      |      |      |
|                                                                            |                             |      | Com  | mission | of Unive | ersal Ato | omic Icel | breakers                           | s (IB-60 1 | type) |      |      |      |      |      |      |      |
| 1 <sup>st</sup> IB-60                                                      | 2017                        |      |      |         |          |           |           |                                    |            |       |      |      |      |      |      |      |      |
| 2 <sup>nd</sup> IB-60                                                      | 2019                        |      |      |         |          |           |           |                                    |            |       |      |      |      |      |      |      |      |
| 3 <sup>rd</sup> IB-60                                                      | 2021                        |      |      |         |          |           |           |                                    |            |       |      |      |      |      |      |      |      |
| - Linear icebreakers operational period - If prolonged up to 175 000 hours |                             |      |      |         |          |           |           |                                    |            |       |      |      |      |      |      |      |      |
| - Low-draught icebreakers operational period                               |                             |      |      |         |          |           |           | - If prolonged up to 175 000 hours |            |       |      |      |      |      |      |      |      |

- New universal icebreakers operational period

# **Universal Atomic Icebreaker**



Universal Atomic Icebreaker. General Scheme. Longitudal Section.



ф

### **Reactor Plant RITM-200 in Protective Casing.**



**RITM-200 dimensions compared to present icebreakers' NPP** 



| Principal Dimensions     | Project 1052 | Project 10580         | Project 22220              |
|--------------------------|--------------|-----------------------|----------------------------|
|                          |              |                       | Permanently – Western      |
|                          |              |                       | Arctic incl. Barents,      |
|                          |              |                       | Pechora and Kara Sea,      |
| Basic area of operations | Arctic       | Yenisei River and     | shallow waters of the      |
|                          |              | shallow Arctic waters | Yenisei River (up to port  |
|                          |              |                       | of Dudinka) and the Gulf   |
|                          |              |                       | of Ob. Eastern Arctic – in |
|                          |              |                       | summer-autumn period       |
| Length overall, m        | 148,0        | 150,0                 | 173,3                      |
| Beam, m                  | 30,0         | 29,2                  | 34,0                       |
| Board height, m          | 17,2         | 15,2                  | 15,2                       |
| Draught, m               | 11,00        | 8,1                   | 10,5                       |
| Minimal                  | -            | -                     | 8,55                       |
| Water displacement, t    | 23 460       | 19 600                | 33 530                     |
| Minimal                  | -            | -                     | 25 540                     |
| Quantity and power of    | 2 * 27 580   | 2 * 18 400            | 2 * 33 500                 |
| turbines, kW             |              |                       |                            |
| Propulsion, hp           | 75 000       | 50 000                | 91 000                     |
| Ice-free water speed,    | 20,8         | 20,2                  | ~ 22                       |
| knots                    |              |                       |                            |
| Ice passability, m       | 2,25         | 1,95                  | 2,8-2,9                    |
| Shaft power to water     | 2,09         | 1,66                  | 1,79                       |
| displacement             |              |                       |                            |
| Crew quantity            | 107          | 91                    | 75                         |

# Thank you for your attention!

